8.26. GCC-12.2.0

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 160 SBU (with tests)
Required disk space: 5.1 GB

8.26.1. Installation of GCC

If building on x86_64, change the default directory name for 64-bit libraries to lib:

case $(uname -m) in
    sed -e '/m64=/s/lib64/lib/' \
        -i.orig gcc/config/i386/t-linux64

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd       build

Prepare GCC for compilation:

../configure --prefix=/usr            \
             LD=ld                    \
             --enable-languages=c,c++ \
             --disable-multilib       \
             --disable-bootstrap      \

Note that for other programming languages there are some prerequisites that are not yet available. See the BLFS Book GCC page for instructions on how to build all of GCC's supported languages.

The meaning of the new configure parameters:


This parameter makes the configure script use the ld installed by the binutils built earlier in this chapter, rather than the cross-built version which would otherwise be used.


This switch tells GCC to link to the system installed copy of the zlib library, rather than its own internal copy.

Compile the package:



In this section, the test suite for GCC is considered important, but it takes a long time. First time builders are encouraged to not skip it. The time to run the tests can be reduced significantly by adding -jx to the make command below where x is the number of cores on your system.

One set of tests in the GCC test suite is known to exhaust the default stack, so increase the stack size prior to running the tests:

ulimit -s 32768

Test the results as a non-privileged user, but do not stop at errors:

chown -Rv tester .
su tester -c "PATH=$PATH make -k check"

To receive a summary of the test suite results, run:


For only the summaries, pipe the output through grep -A7 Summ.

Results can be compared with those located at https://www.linuxfromscratch.org/lfs/build-logs/11.2/ and https://gcc.gnu.org/ml/gcc-testresults/.

In g++, four tests related to PR100400 are known to be reported as both XPASS and FAIL. It's because the test file for this known issue is not well written.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have not resolved them yet. Unless the test results are vastly different from those at the above URL, it is safe to continue.

Install the package:

make install

The GCC build directory is owned by tester now and the ownership of the installed header directory (and its content) will be incorrect. Change the ownership to root user and group:

chown -v -R root:root \
    /usr/lib/gcc/$(gcc -dumpmachine)/12.2.0/include{,-fixed}

Create a symlink required by the FHS for "historical" reasons.

ln -svr /usr/bin/cpp /usr/lib

Add a compatibility symlink to enable building programs with Link Time Optimization (LTO):

ln -sfv ../../libexec/gcc/$(gcc -dumpmachine)/12.2.0/liblto_plugin.so \

Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as expected. We do this by performing some sanity checks:

echo 'int main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

There should be no errors, and the output of the last command will be (allowing for platform-specific differences in the dynamic linker name):

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

Now make sure that we're setup to use the correct start files:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

The output of the last command should be:

/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/../../../../lib/crt1.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/../../../../lib/crti.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.0/../../../../lib/crtn.o succeeded

Depending on your machine architecture, the above may differ slightly. The difference will be the name of the directory after /usr/lib/gcc. The important thing to look for here is that gcc has found all three crt*.o files under the /usr/lib directory.

Verify that the compiler is searching for the correct header files:

grep -B4 '^ /usr/include' dummy.log

This command should return the following output:

#include <...> search starts here:

Again, the directory named after your target triplet may be different than the above, depending on your system architecture.

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

References to paths that have components with '-linux-gnu' should be ignored, but otherwise the output of the last command should be:


A 32-bit system may see a few different directories. For example, here is the output from an i686 machine:


Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

The output of the last command should be:

attempt to open /usr/lib/libc.so.6 succeeded

Make sure GCC is using the correct dynamic linker:

grep found dummy.log

The output of the last command should be (allowing for platform-specific differences in dynamic linker name):

found ld-linux-x86-64.so.2 at /usr/lib/ld-linux-x86-64.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate and retrace the steps to find out where the problem is and correct it. Any issues will need to be resolved before continuing with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Finally, move a misplaced file:

mkdir -pv /usr/share/gdb/auto-load/usr/lib
mv -v /usr/lib/*gdb.py /usr/share/gdb/auto-load/usr/lib

8.26.2. Contents of GCC

Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gcc-ar, gcc-nm, gcc-ranlib, gcov, gcov-dump, gcov-tool, and lto-dump
Installed libraries: libasan.{a,so}, libatomic.{a,so}, libcc1.so, libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a, libgomp.{a,so}, libitm.{a,so}, liblsan.{a,so}, liblto_plugin.so, libquadmath.{a,so}, libssp.{a,so}, libssp_nonshared.a, libstdc++.{a,so}, libstdc++fs.a, libsupc++.a, libtsan.{a,so}, and libubsan.{a,so}
Installed directories: /usr/include/c++, /usr/lib/gcc, /usr/libexec/gcc, and /usr/share/gcc-12.2.0

Short Descriptions


The C++ compiler


The C compiler


The C preprocessor; it is used by the compiler to expand the #include, #define, and similar statements in the source files


The C++ compiler


The C compiler


A wrapper around ar that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options


A wrapper around nm that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options


A wrapper around ranlib that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options


A coverage testing tool; it is used to analyze programs to determine where optimizations will have the most effect


Offline gcda and gcno profile dump tool


Offline gcda profile processing tool


Tool for dumping object files produced by GCC with LTO enabled


The Address Sanitizer runtime library


GCC atomic built-in runtime library


The C preprocessing library


Contains run-time support for gcc


This library is linked in to a program when GCC is instructed to enable profiling


GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming in C/C++ and Fortran


The GNU transactional memory library


The Leak Sanitizer runtime library


GCC's LTO plugin allows binutils to process object files produced by GCC with LTO enabled


GCC Quad Precision Math Library API


Contains routines supporting GCC's stack-smashing protection functionality


The standard C++ library


ISO/IEC TS 18822:2015 Filesystem library


Provides supporting routines for the C++ programming language


The Thread Sanitizer runtime library


The Undefined Behavior Sanitizer runtime library